The Breuil–mézard Conjecture for Potentially Barsotti–tate Representations
نویسنده
چکیده
We prove the Breuil–Mézard conjecture for 2-dimensional potentially Barsotti–Tate representations of the absolute Galois group GK , K a finite extension of Qp, for any p > 2 (up to the question of determining precise values for the multiplicities that occur). In the case that K/Qp is unramified, we also determine most of the multiplicities. We then apply these results to the weight part of Serre’s conjecture, proving a variety of results including the Buzzard–Diamond–Jarvis conjecture.
منابع مشابه
The Breuil–mézard Conjecture for Potentially Barsotti–tate Representations. Toby Gee and Mark Kisin
We prove the Breuil–Mézard conjecture for 2-dimensional potentially Barsotti–Tate representations of the absolute Galois group GK , K a finite extension of Qp, for any p > 2 (up to the question of determining precise values for the multiplicities that occur). In the case that K/Qp is unramified, we also determine most of the multiplicities. We then apply these results to the weight part of Serr...
متن کاملOn a Conjecture of Conrad, Diamond, and Taylor
We prove a conjecture of Conrad, Diamond, and Taylor on the size of certain deformation rings parametrizing potentially Barsotti-Tate Galois representations. To achieve this, we extend results of Breuil and Mézard (classifying Galois lattices in semistable representations in terms of “strongly divisible modules”) to the potentially crystalline case in Hodge-Tate weights (0, 1). We then use thes...
متن کاملThe Breuil–mézard Conjecture for Quaternion Algebras
We formulate a version of the Breuil–Mézard conjecture for quaternion algebras, and show that it follows from the Breuil–Mézard conjecture for GL2. In the course of the proof we establish a mod p analogue of the Jacquet– Langlands correspondence for representations of GL2(k), k a finite field of characteristic p.
متن کاملSerre Weights and Breuil’s Lattice Conjecture in Dimension Three
We prove in generic situations that the lattice in a tame type induced by the completed cohomology of a U(3)-arithmetic manifold is purely local, i.e., only depends on the Galois representation at places above p. This is a generalization to GL3 of the lattice conjecture of Breuil. In the process, we also prove the geometric Breuil-Mézard conjecture for (tamely) potentially crystalline deformati...
متن کاملKisin’s lectures on the eigencurve via Galois representations
1: Overview of main results. 2: The eigencurve via Galois representations. 3: Classification of crystalline Galois representations. (2 lectures). 4: Construction of potentially semi-stable deformation ring (2 lectures). 5: Modularity of potentially Barsotti-Tate representations. 6: The Fontaine-Mazur conjecture for GL2 (2 lectures). Recall the statement of the Fontaine-Mazur conjecture, which s...
متن کامل